The molecular packing of 8 OH -DPAT showed that there are few close contacts between molecules. The molecules lie in an infinite stack with pairs of molecules related by inversion centres. The propyl arms are badly disordered; this hindered the search for close contacts between the molecules. It is possible that there is a similar salt-bridge effect to that found in $8 \mathrm{MeO}-\mathrm{PAT}$ although the distances are a little long. The $\mathrm{C}(11), \mathrm{C}(12)$ and $\mathrm{C}(13)$ propyl chain is closer to the nearest Cl ion than the $\mathrm{C}(14)-\mathrm{C}(16)$ propyl chain; the H atoms on $\mathrm{C}(11)$ come within $3 \AA$ of the Cl ion. The other closest atoms to the Cl ion are the H atoms bound to $\mathrm{C}(6)$ and $\mathrm{C}(7)$.

We would like to thank Drs I. Dawson, R. L. Jones and N. H. Wilson for helpful discussions and supplying the crystals. We also acknowledge SERC for financial support.

References

Giesecke, J. (1980). Acta Cryst. B36, 110-114.
Gould, R. O. \& Taylor, P. (1983). CALC. An interactive program for molecular geometry. Univ. of Edinburgh, Scotland.
Johansson, A. M., Nilsson, J. L. G., Karlen, A., Hacksell, U., Svensson, K., Carlsson, A., Kenne, L. \& Sundell, S. (1987). J. Med. Chem. 30, 1135-1144.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Karlsson, A., Petterson, C., Sundell, S., Arvidsson, L. E. \& Hacksell, U. (1988). Acta Chem. Scand. B42, 231-236.
Mallinson, P. D. \& Muir, K. W. (1985). J. Appl. Cryst. 18, 51-53.
Motherwell, W. D. S. (1972). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England. Peroutka, S. J. (1988). Annu. Rev. Neurosci. 11, 45-60.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.

Acta Cryst. (1992). C48, 523-525

Mesoionic Compounds. 2. Structure of 2-Morpholino-5-propyl-1,3-dithiolium-4-thiolate

By Kung-Kal Cheung*
Department of Chemistry, University of Hong Kong, Bonham Road, Hong Kong

Sérgio Galembeck
Universidade de São Paulo, FFCL-RP, Campus Universitário, 14049 Ribeirão Preto, SP, Brazil
Joseph Miller
Universidade de São Paulo, FFCL-RP, Campus Universitário, 14049 Ribeirão Preto, SP, Brazil, Universidade de São Paulo, IQ, Cidade Universitária, Cx. Postal 20780, 01498 São Paulo, SP, Brazil, and Universidade Federal da Paraiba, LTF, Campus Universitário I, Cx. Postal 5009, 58059 João Pessoa, PB, Brazil

Magali B. de Oliveira
Universidade de São Paulo, FFCL-RP, Campus Universitário, 14049 Ribeirão Preto, SP, Brazil
Arnaldo B. Pereira
Universidade de São Paulo, FCF-RP, Campus Universitário, 14049 Ribeirão Preto, SP, Brazil
and Alfredo M. Simas
Universidade Federal de Pernambuco, DQF, Cidade Universitária, 50739 Recife, PE, Brazil
(Received 11 December 1990; accepted 16 August 1991)

Abstract. $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NOS}_{3}, \quad M_{r}=261.43$, monoclinic, $P 2_{1} / c, a=7.511$ (1), $b=10.088$ (1), $c=17.383$ (1) \AA,

[^0]0108-2701/92/030523-03\$03.00
$\beta=112.41(1)^{\circ}, \quad V=1217.7(4) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.426 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Mo} K \alpha)=0.71073 \AA, \mu=5.6 \mathrm{~cm}^{-1}$, $F(000)=552, T=297 \mathrm{~K}, R=0.030$ for 1339 reflections with $\left|F_{o}\right|>3 \sigma\left(\left|F_{o}\right|\right)$. In the pentatomic ring
system of this mesoionic compound there are two short $\mathrm{C}-\mathrm{S}$ bonds (1.715 and $1.710 \AA$) which are comparable to the $\mathrm{C}-\mathrm{S}^{-}$(thiolate) bond of $1.719 \AA$, and two longer $\mathrm{C}-\mathrm{S}$ bonds (1.764 and $1.753 \AA$). The structure also features a substituted morpholine molecule.

Introduction. The title compound is a mesoionic compound related to 5-methyl-2-piperidino-1,3-thiolium-4-thiolate (Cheung, Galembeck, Miller, de Oliveira, Pereira \& Simas, 1991). The structure analysis was carried out to obtain further structural information and to throw light on the extent of the delocalization of the positive charge within and outside the pentatomic heterocycle, and the degree of aromaticity or level of aromatic stabilization energy.

Experimental. Orange crystal of dimensions $0.07 \times$ $0.15 \times 0.25 \mathrm{~mm}$. Enraf-Nonius CAD-4 diffractometer, with graphite-monochromated Mo $K \alpha$ radiation and scintillation counter. Cell parameters by least squares from setting angles of 25 reflections (10 $<2 \theta<15^{\circ}$), measured on the diffractometer. The intensities of 4527 reflections ($2 \theta_{\text {max }}=50^{\circ}$), in the range $-8 \leq h \leq 8, \quad 0 \leq k \leq 12,-20 \leq l \leq 20$ were measured using $\omega-2 \theta$ scans, ω-scan angle ($1.00+$ $0.344 \tan \theta)^{\circ}$ at $1.10-5.49^{\circ} \mathrm{min}^{-1}$, extended 25% on each side for background measurements. Three standard reflections measured every 2 h showed no decay. Systematic absences indicated $P 2_{1} / c$ and this was confirmed by the structure solution. The intensity data were corrected for Lorentz and polarization effects. After equivalent reflections were averaged, the 4527 measured data gave 2268 independent reflections, of which 1339 with $I>1.5 \sigma(I)$, where $\sigma^{2}(I)=S+4\left(B_{1}+B_{2}\right)\left(S=\right.$ scan, B_{1} and $B_{2}=$ background counts), were considered observed. $R_{\text {int }}=$ 0.021 for observed reflections and 0.034 for all reflections. The structure was solved with the ringfragment $\mathrm{NC}(\mathrm{CS})_{2} \mathrm{~S}$ as input using DIRDIF (Beurskens, Bosman, Doesburg, Gould, van den Hark, Prick, Noordik, Beurskens \& Smith, 1984),

Fig. 1. ORTEPII drawing of the molecule with the numbering of atoms.

Table 1. Atomic coordinates and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$ with e.s.d.'s in parentheses

Table 2. Bond lengths (\AA), angles $\left({ }^{\circ}\right)$ and selected torsion angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{S}(1)-\mathrm{C}(1)$	1.715 (4)	$\mathrm{N}-\mathrm{C}(7)$	1.468 (4)
$\mathrm{S}(1)-\mathrm{C}(2)$	1.764 (3)	$\mathrm{N}-\mathrm{C}(10)$	1.472 (4)
S(2)-C(1)	1.710 (3)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.346 (5)
$S(2)-C(3)$	1.753 (3)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.500 (4)
$\mathrm{S}(3)-\mathrm{C}(2)$	1.719 (4)	$\mathrm{C}(4)-\mathrm{C}(5)$	1.525 (4)
O-C(8)	1.432 (4)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.521 (4)
O-C(9)	1.419 (4)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.512 (4)
$\mathrm{N}-\mathrm{C}(1)$	1.321 (4)	$\mathrm{C}(9)-\mathrm{C}(10)$	1.511 (4)
$\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{C}(2)$	97.7 (1)	$\mathrm{S}(3)-\mathrm{C}(2)-\mathrm{C}(3)$	131.0 (2)
$\mathrm{C}(1)-\mathrm{S}(2)-\mathrm{C}(3)$	96.9 (1)	$\mathrm{S}(2)-\mathrm{C}(3)-\mathrm{C}(2)$	117.2 (2)
$\mathrm{C}(8)-\mathrm{O}-\mathrm{C}(9)$	109.8 (2)	$\mathrm{S}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	116.9 (2)
$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(7)$	122.3 (2)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	125.9 (3)
$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(10)$	120.7 (2)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	115.6 (3)
$\mathrm{C}(7)-\mathrm{N}-\mathrm{C}(10)$	114.9 (2)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	111.1 (3)
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{S}(2)$	114.0 (2)	$\mathrm{N}-\mathrm{C}(7)-\mathrm{C}(8)$	109.7 (3)
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{N}$	123.3 (2)	$\mathrm{O}-\mathrm{C}(8)-\mathrm{C}(7)$	111.9 (3)
$\mathrm{S}(2)-\mathrm{C}(1)-\mathrm{N}$	122.7 (2)	$\mathrm{O}-\mathrm{C}(9)-\mathrm{C}(10)$	111.6 (2)
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{S}(3)$	114.9 (2)	$\mathrm{N}-\mathrm{C}(10)-\mathrm{C}(9)$	109.9 (3)
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	114.2 (2)		
$\mathrm{C}(7)-\mathrm{N}-\mathrm{C}(1)-\mathrm{S}(1)$	173.7 (2)	$\mathrm{N}-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{O}$	53.9 (3)
$\mathrm{C}(7)-\mathrm{N}-\mathrm{C}(1)-\mathrm{S}(2)$	-7.8(4)	$\mathrm{C}(8)-\mathrm{O}-\mathrm{C}(9)-\mathrm{C}(10)$	61.5 (3)
$\mathrm{C}(10)-\mathrm{N}-\mathrm{C}(1)-\mathrm{S}(1)$	10.9 (4)	$\mathrm{C}(9)-\mathrm{O}-\mathrm{C}(8)-\mathrm{C}(7)$	-61.5 (3)
$\mathrm{C}(10)-\mathrm{N}-\mathrm{C}(1)-\mathrm{S}(2)$	-170.6 (2)	$\mathrm{C}(10)-\mathrm{N}-\mathrm{C}(7)-\mathrm{C}(8)$	-48.6 (4)
		$\mathrm{O}-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}$	- 54.6 (4)

which gave all non- H atoms, and was refined by full-matrix least squares with atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV) using the SDP programs (Enraf-Nonius, 1985) on a MicroVAX II computer. The H atoms in calculated positions were not refined. Convergence for 136 variables by least squares with $w=4 F_{o}^{2} /\left[\sigma^{2}\left(F_{o}^{2}\right)+\left(0.03 F_{o}^{2}\right)^{2}\right]$ was reached at $R=0.030, w R=0.032$ and $S=1.010$ for 1339 reflections with $\left|F_{o}\right|>3 \sigma\left(\left|F_{o}\right|\right) . \quad(\Delta / \sigma)_{\max }=$ 0.05. A final difference Fourier map was featureless, with maximum positive and negative peaks of 0.19 and $0.20 \mathrm{e}^{\AA^{-3}}$ respectively. There were no intermolecular distances less than $3.5 \AA$.

Discussion. An ORTEPII drawing (Johnson, 1976) of the molecule with atomic numbering scheme is shown in Fig. 1. The atomic parameters of C, N, O
and S atoms are listed in Table 1.* Bond lengths, bond angles and selected torsion angles are given in Table 2. The $C(2)-C(3)$ bond of $1.346(5) \AA$ is comparable to the $\mathrm{C}=\mathrm{C}$ bond of $1.362(25) \AA$ in thiophenes (Allen, Kennard, Watson, Brammer, Orpen \& Taylor, 1987). The $\mathrm{S}(3)-\mathrm{C}(2)$ bond of $1.719(4) \AA$ is longer than the $\mathrm{C}=\mathrm{S}$ bond of $1.683(1) \AA$ in the substituted thione 4-phenylthiazole-2(3H)-thione (Nalini \& Desiraju, 1989) and is comparable to the $S(1)-C(1)$ and $\mathrm{S}(2)-\mathrm{C}(1)$ bonds of 1.715 (4) and 1.710 (3) \AA respectively, but is significantly shorter than the $S(1)-C(2)$ and $S(2)-C(3)$ bonds of 1.764 (3) and 1.753 (3) \AA respectively. The short $S(3)-C(2)$ bond can be viewed as a single bond with the S atom carrying a negative charge so that $C(2)$ is positive relative to $S(3)$. The comparable and short $S(1)-C(1)$ and $\mathrm{S}(2)-\mathrm{C}(1)$ bonds can be viewed as a positive charge in the pentatomic ring close to $C(1)$ so that $C(1)$ is positive relative to the $S(1)$ and $S(2)$ atoms. The pentatomic ring system is nearly planar and the torsion angles involving the five ring atoms are close to 0 and 180°. All the features of the pentatomic

[^1]heterocyclic system in this compound agree very well with those in 5-methyl-2-piperidino-1,3-dithiolium-4thiolate (Cheung et al., 1991). The $\mathrm{C}(1)-\mathrm{N}$ bridging distance between the two ring systems is 1.321 (4) \AA. The morpholinyl ring has a chair conformation with N and O deviating $-0.560(2)$ and $+0.670(2) \AA$ respectively from the plane through $\mathrm{C}(7), \mathrm{C}(8), \mathrm{C}(9)$ and $\mathrm{C}(10)$. The $\mathrm{C}_{s p^{3}}-\mathrm{N}_{s p^{3}}$ bonds are 1.468 (4) and 1.472 (4) \AA, the $\mathrm{C}_{s p^{3}}-\mathrm{C}_{s p^{3}}$ bonds are 1.511 (4) and 1.512 (4) \AA, while the $C_{s p^{3}}-\mathrm{O}$ bonds are $1.432(4)$ and 1.419 (4) \AA, and all six bond angles are close to 109.5°.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.
Beurskens, P. T., Bosman, W. P., Doesburg, h. M., Gould, R. O., van den Hark, Th. E. M., Prick, P. A. J., Noordik, J. H., Beurskens, M. \& Smith, J. M. M. (1984). DIRDIF. Tech. Rep. 1984/1. Crystallography Laboratory, Toernooiveld, 6525 ED Nijmegen, The Netherlands.
Cheung, K. K., Galembeck, S., Miller, J., de Oliveira, M. B., Pereira, A. B. \& Simas, A. M. (1991). Acta Cryst. C47, 2630-2632.
Enraf-Nonius (1985). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Nalini, V. \& Desiraju, G. R. (1989). Acta Cryst. C45, 15251527.

Structure of an Intermediate Methylated Product in the Synthesis of Drimanes

By Kalyan Das and U. C. Sinha*
Department of Physics, Indian Institute of Technology, Bombay-400 076, India
S. R. Desai and S. V. Bhat
Department of Chemistry, Indian Institute of Technology, Bombay-400 076, India
and S. S. Tavale and V. G. Puranaik
Physical and Structural Chemistry Division, National Chemical Laboratory, Pune-411 008, India

(Received 14 February 1991; accepted 14 August 1991)

Abstract

Methoxymethyl-1,1,4a-trimethyl-6-[(phenylthio)methyl]-1,5,8,8a-tetrahydro-4(4a H)naphthalenone, $\quad \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~S}, \quad$ m.p. $=382 \mathrm{~K}, \quad M_{r}=$ 356.53, monoclinic, $P 2_{1} / c, \quad a=11.810(1), \quad b=$ 8.929 (2), $\quad c=18.716$ (1) $\AA, \quad \beta=92.773$ (8$)^{\circ}, \quad V=$

* To whom correspondence should be addressed.

0108-2701/92/030525-03\$03.00
$1971.32 \AA^{3}, Z=4, D_{x}=1.201 \mathrm{Mg} \mathrm{m}^{-3}, \lambda($ Mo K α) $=0.71069 \AA, \quad \mu($ Mo $K \alpha)=0.137 \mathrm{~mm}^{-1}, \quad F(000)=$ 768, $T=291 \mathrm{~K}$, final $R=0.055, w R=0.074$ using 2674 reflections. The bicyclic skeleton of the molecule is cis fused. An intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction $\left[\mathrm{C}(20)-\mathrm{H}(20) \cdots \mathrm{O}\left(1^{\prime}\right) \quad 3.306\right.$ (3) \AA] $]$ was observed.
(C) 1992 International Union of Crystallography

[^0]: * Author to whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters, H-atom parameters, least-squares planes and a complete list of bonding interactions have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54586 (22 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH 12 HU , England.

